On 6 February 2023, a Mw 7.8 earthquake struck Turkey and Syria. It was followed by a Mw 7.7 earthquake nine hours later, centred 95 km (59 mi) to the north–northeast from the first, in Kahramanmaraş Province. There was widespread damage and tens of thousands of fatalities.

It was the deadliest earthquake worldwide since the 2010 Haiti earthquake and fifth-deadliest earthquake of the 21st century. As of 21 February 2023, over 48,900 deaths have been confirmed; over 42,300 in Turkey, and over 6,600 in Syria… and building regulations aren’t being adhered to?? Buildingspecifier.com’s Joe Bradbury investigates:

Earthquakes cost lives. They also cost money. LOT’S of it. Collectively, the latest earthquakes across Turkey and Syria are estimated to have caused US$84.1 billion worth of damage, making them the fourth-costliest earthquakes on record. Coupled with that, it is also the deadliest natural disaster in Turkey’s modern history.

Whilst people are still being pulled from the rubble, the rest of the world watches, reeling – how did this happen and what could we have done to lessen the fatal outcome?

The sight of newly built apartments toppling during the carnage has stirred much heartbreak and outrage, especially within the global construction community. The fact that even some of the newest residential buildings in Turkey and Syria have crumbled to dust has raised serious concerns about current building safety regulations in those countries.

Afterall, buildings should be able to resist quakes of this magnitude thanks to modern construction techniques. And regulations enacted in the aftermath of prior tragedies in the country were supposed to ensure that these safeguards were in place.

Although the quakes were strong, experts within the field are now saying that well-built buildings should have been able to withstand them. So why did so many topple, taking thousands of people with them?

Speaking on the subject, Prof David Alexander, an expert in emergency planning and management at University College London recently told the BBC “In most places the level of shaking was less than the maximum, so we can conclude out of the thousands of buildings that collapsed, almost all of them don’t stand up to any reasonably expected earthquake construction code.”

Why aren’t building regulations being enforced?

Following earlier disasters, such as the 1999 earthquake that devastated the city of Izmit in Turkey’s northwestern region, construction restrictions have actually been strengthened. Yet, it is now coming to light that the legislation,(including the most recent requirements established in 2018) have thus far been poorly enforced.

In Turkey, for example, the government has offered periodic “building amnesties,” which are effectively legal exemptions from paying a charge for structures built without the necessary safety certificates. They have been in effect since the 1960s (with the latest in 2018).

Opponents have long cautioned that such amnesties increase the likelihood of disaster in the case of a severe earthquake. According to Pelin Pnar Giritliolu, Istanbul chairman of the Union of Chambers of Turkish Engineers and Architects’ Chamber of City Planners, up to 75,000 buildings in the devastated earthquake zone in southern Turkey have been granted construction amnesties.

We can do better

Thankfully, other countries take their responsibilities more seriously and stand as a shining example for the benefits of adhering to code. Japan is one such example; where millions of people live in densely populated high-rise buildings despite the country’s history of severe earthquakes. Japan alone demonstrates how construction codes can assist in keeping people safe during just such catastrophes.

Building safety criteria vary depending on a building’s usage and proximity to earthquake-prone areas: from simple reinforcing to motion dampers throughout the structure to installing the entire structure on top of a massive shock absorber to isolate it from ground movement.

The relationship between a building and an earthquake

We’ve built magnificent structures and cities throughout history, only for them to be destroyed by natural forces. Earthquakes are one of the most devastating forces on Earth; seismic waves travelling through the ground can demolish structures, kill people, and cost enormous sums of money in loss and repair.

According to the National Earthquake Information Centre, 20,000 earthquakes occur each year, with 16 of them being catastrophic disasters.

Engineers have introduced new designs and building materials over the last few decades to better equip structures to resist earthquakes.

Before delving into the characteristics of earthquake-proof buildings, it’s critical to understand how earthquakes affect man-made structures. When an earthquake happens, shockwaves are sent throughout the ground in brief, quick intervals that stretch in all directions. While structures are normally designed to withstand vertical forces caused by their weight and gravity, they are not designed to withstand side-to-side pressures caused by earthquakes.

This horizontal movement causes vibrations in the walls, floors, columns, beams, and connectors that keep them all together. The movement disparity between the bottom and top of structures causes enormous stress, causing the supporting frame to break and the entire structure to collapse.

How to construct earthquake-safe buildings

Engineers labour to reinforce the structure and counteract the forces of a probable earthquake when designing an earthquake-proof building. Because earthquakes generate energy that pulls buildings in one direction, the technique entails having the building push in the other direction. Here are several strategies for making structures more earthquake resistant.

  1. Lay moving foundations

The structure is built on flexible pads that insulate the foundation from the earth. When an earthquake strikes, just the foundation shifts, while the building retains its structural integrity.

  1. Use shock absorbers

Tuned dampers mounted to beams transform motion into heat and absorb stress by using pistons and oil. This is accomplished through the use of two methods – vibrational control devices and pendulum power.

  1. Strengthen the structure of the building

Buildings must disperse forces that go through them during a seismic event in order to withstand collapse. Shear walls, cross braces, diaphragms, and moment-resisting frames are essential for building reinforcement.

  1. Use earthquake-resistant materials

The different forms of structural steel allow it to bend without breaking. Wood is a lightweight and bendable material with a high weight-to-strength ratio. Contemporary materials have the ability to be more flexible and shape-retaining.

In summary

Earthquakes are a powerful, destructive, and unexpected force that may demolish buildings, destroy towns, and put construction companies’ labour to the test. Certain areas of the world are more vulnerable to earthquakes than others, and these cities, towns, communities, and urban centres must safeguard themselves and their citizens from these natural disasters.

Governments must follow and enforce building codes; failing to do so results in blood on their hands.

The most difficult aspect of preparing for earthquakes is that no one knows when one will occur or how large it will be. Current measurement and detection technology can assist us in being better prepared for them. Building-resistant material advancements have also improved the construction industry’s ability to build for earthquakes.

The construction industry is perfectly positioned to take use of current technology that has the potential to save both lives and cities.

 

It’s been around 2.5 million years since the Stone Age, when people lived in caves and used tools made of various sorts of stone. We have witnessed tremendous exploits in the realm of building innovation throughout the evolution of humanity – and possibly the highlights of the construction revolution have occurred within the last 40 years. Joe Bradbury of Buildingspecifier.com examines the top ten construction inventions of our time to reveal our outstanding technological heritage:

1. Mechanisation

To truly comprehend the revolutionary impact of mechanisation, we must go back a great deal further than 40 years.

The introduction of hydraulic and pneumatic devices in the mid to late nineteenth century was a truly astonishing innovation for our species, leading to the development of earth-moving equipment and other gear that are today standard in our business. These nineteenth-century technologies have greatly reduced the time and effort required for large-scale undertakings.

Fast forward to the early twentieth century, when mechanisation began to exhibit more advanced functioning and capacities. We introduced cherry pickers, concrete mixers, cranes, and power tools around this time. During this period, the internal-combustion engine appeared, replacing hand shovels, wheelbarrows, and working animals with forklifts, tractors, and bulldozers.

2. Prefabrication and Construction Industrialization

It can be challenging to assemble huge sophisticated components on-site, exposed to the elements, piece by piece. Off-site fabrication has significantly boosted the efficiency of this process.

A huge heat exchanger built in a vendor’s shop, for example, will not only arrive on site ready to plug in, but will also benefit from better management of components and material inventories, as well as increased efficiency and production. The return on investment rises, while waste and inefficiency decrease.

When components such as concrete insulated panels, timber frame panels, pump units, compressors, and instrument panels are manufactured in a factory rather than on-site, significant time savings are realised.

3. Computer-Aided Design (CAD) (CAD)

During the height of the Middle Ages, architects, draughtsmen, master stonemasons, and builders produced some of the world’s most stunning buildings employing ground-breaking design and construction technologies.

These approaches remained mostly unaltered for several centuries. However, in the latter half of the twentieth century, computer-aided design (CAD) appeared, permanently altering construction – for the first time, disagreements during the design process were rendered evident.

Previously, issues such as separate systems, electrical conduits and high-voltage alternating current ducting for example, competing for the same physical space bedevilled architects and builders, with their two-dimensional plans and section drawings.

4. Building Information Modelling (BIM)

While computer-aided design (CAD) revolutionised the role of designers, Building Information Modelling (BIM) has proven to be astonishingly versatile, allowing architects, engineers, contractors, and subcontractors to collaborate on the fine details of design and construction by using the same database and computer model.

All project stakeholders collaborate on a detailed 3D model that incorporates all of a structure’s functional systems – such as pavement or curbs, beams and girders, HVAC and electrical installations, as well as the aesthetics of walls, arches, roofs, and railings.

Because BIM is a collaborative process from start to finish, it enables all preconstruction partners to visualise and analyse design decisions, as well as identify interferences and other problems, before work begins on site.

Working cooperatively saves contractors countless resources because building does not begin until all parties have submitted their plans, guaranteeing disputes are found and corrected quickly, easily, and ahead of the ground being broken on site.

5. Mobile Devices

In various different ways, mobile technology has drastically altered the construction sector. One of the most significant for contractors is the improvement in project management. All parties involved can collaborate utilising the same consolidated information sources via smartphones and tablets, ensuring that no one is left out of the loop, no matter where they are.

Real-time analytics in construction have also been made possible by mobile devices. Instead of needing to write a report at the end of the day, foremen may now keep track of performance, conditions, and costs throughout the day utilising reporting tools. Project managers can use mobile business information to predict necessary modifications, allowing them to respond immediately to keep things on track and within budget. Plus, reporting apps ensure that all stakeholders have access.

6. Robotic Total Stations

Traditionally, a team uses building drawings plus a tape measure, spirit level, and theodolite – a precision equipment for calculating angles – to find attachment sites for things like cable trays and pipework.

This approach, however, does not function well with more complex structures. It is time-consuming and labour-intensive, with a large margin for error that can result in major implications such as confrontations with other construction services and prefabricated systems that do not fit, wasting time, money, and materials.

Enter the Robotic Total Station (RTS), an electronic theodolite with an electronic distance measurement that can be controlled remotely from a distance. The layout can be accomplished by a single person using a tablet equipped with the necessary software, with RTS ensuring higher efficiency, improved accuracy, fewer mistakes, and less paperwork, as well as lower labour expenses.

7. Eco-Friendly Building Materials

As the construction sector seeks ways to cut carbon emissions, it is turning to more sustainable building methods. This includes the use of environmentally friendly building materials such as Cross-Laminated Timber, salvaged wood, bamboo, recycled rubber, and a variety of other novel materials. Consider a construction made of straw bales, rammed earth, Hempcrete (a concrete-like substance manufactured from hemp), or ferrock (concrete-like material made from steel dust); some of these materials absorb and trap carbon dioxide, indicating that they are carbon-neutral.

Using sustainable building materials benefits the environment while also lowering construction costs, improving structural energy efficiency, and increasing property value. The reduction in operational costs reduces overall building costs by 5 to 15%, depending on the green material utilised. In some locations, there are also regulatory incentives that make sustainable building more appealing.

Buildings that are created in a sustainable manner are in high demand. They frequently have higher occupancy rates and rental prices than traditional-built structures. Green construction materials may also benefit occupant health. Green construction is a win-win-win situation for the industry, the residents, and the earth.

8. Personal Protective Equipment (PPE)

While personal protective equipment (PPE) is significantly less technologically advanced than the other items on this list, there is no doubt that it has helped to revolutionise the construction industry in terms of health and safety during the previous 40 years.

Protective apparel has gradually evolved as the hazards encountered by construction workers have increased.

For decades, the high-vis jacket and hard hat have been the cornerstones of construction site safety apparel. This will remain the case, but new technologies are on the horizon that will expand the capabilities of protective garments to provide better safety and extra services to their users going forward.

9. Cloud Computing

Cloud computing is at the heart of the digital construction revolution. Prior to cloud computing, project data was constrained by hardware constraints. You may now outsource data processing and storage to powerful devices that are available from anywhere. As a result, there is nearly limitless storage and a totally connected workplace.

Real-time data is made available to all stakeholders by leveraging the power of cloud computing, allowing for easy sharing and collaboration. The team is no longer dependent on time-consuming in-person status checks and device storage capabilities.

For contractors, storing project data in the cloud is a no-brainer. According to a survey conducted by the Associated General Contractors of America in partnership with Sage Construction and Real Estate, 85% of contractors have implemented or planned to implement cloud solutions. Cloud computing not only simplifies data storage and access, but it also safeguards you against data loss, damage, or theft. Secure cloud storage protects data while increasing team accessibility.

10. Digital Twins and As-Builts

Despite the fact that the phrase “digital twins” was coined in 2002, the notion of digital twins and digital as-builts has been in use for decades. NASA was among the first to employ a variant of the technique in the 1960s. To avert additional calamity, engineers tried solutions on a digital duplicate of Apollo 13.

As project teams move away from manual, time-consuming paperwork, the usage of digital twins is expanding in the construction sector. A digital twin, also known as a digital as-built, is a virtual counterpart of a physical object that provides real-time data throughout the development and maintenance processes. These computer representations can be used to anticipate carbon footprints, simulate situations, and collect real-time data via sensors installed in the environment.

Considering the Future

What is the future of construction technology? Keep an eye on this space to find out – buildingspecifier.com is dedicated to keeping you informed of industry developmen

It’s no secret that the construction industry is experiencing a severe skills shortage. The business has long been plagued by a scarcity of experienced labour, making meeting deadlines more challenging than ever. Now, according to a new study, more than a third of students have ruled out a future in construction. What’s happening and how can we overcome it? Buildingspecifier.com’s Joe Bradbury discusses:

I’d like to start by stating that I do not intent for this piece to exude negativity, for I have faith in the hardworking professionals and unsung heroes of construction; they have already achieved so much in changing things for the better throughout the course of the last decade, and I remain hopeful that things are moving in the right direction…

…however, there’s no easy way to put this – alarmingly, according to a poll of nearly 4,000 adults over the age of 16 who are currently enrolled in high school, college, or university, 37% would never consider working in the construction sector.

In fact, students were also revealed to more critical of construction when asked their opinions on 17 different industries. Almost half of female respondents claimed they would not work in construction.

Only 5% of the students asked were actively contemplating professions in the industry, compared to 38% of those seeking careers in professional, scientific, and technical activities.

This saddens me after years of keeping my eyes professionally on the wide sprawling and richly varied construction industry. I have seen such vision, such innovation and enthusiasm. I have felt an express desire to deliver the built environment that is deserved and to be proud of. For me, the sector is teaming with inspiration, and if this is failing to be picked up by the next generation, I feel this must be due to a failure to present and communicate ourselves as an industry. We have the goods, we just need to get it across.

Only then, can we attract the type of budding talent that can evoke change.

Nevertheless, the results of the study, conducted by data specialist Savanta ComRes and published by consultancy WSP, should not be ignored.

How can we improve our situation?

Discussing the results of the study, WSP executive director Rachel Skinner stated, “We can’t keep doing things the same way we always have if we want to successfully address the various elements of the critical climate crisis.”

“Having the necessary skills in sufficient strength, breadth, and depth is critical if the UK is to capitalise on the chance to improve economic growth and build new knowledge through the climate transition.”

The research showed that this could be an “uphill struggle”, she said, adding: “While today’s students have grasped the crucial importance of the engineering and infrastructure sectors in securing a lower-carbon future, many of them do not view these sectors as prime targets for their own future employment.

“This leads to key questions: how can we change this perspective? What more can we do to accelerate the development of a workforce with the right skills to deliver against the UK’s net-zero commitments?”

Only half of the students polled believed their generation could have a significant impact on environmental and climate change challenges, and fewer than two in five were confident in their comprehension of the term “green jobs.” And therein lies the rub.

According to two recent surveys, the industry’s skills shortfall has reached “alarming proportions,” with 75% of civil engineering firms finding it difficult to attract experienced employees and 96% of supply chain companies grappling with net-zero capabilities.

The Office for National Statistics revealed also that there were 49,000 unfilled construction job vacancies in September alone.

Coupled with this, the average age of the construction workforce is presently 50-56, with an increase in early retirement seen since the beginning of 2020. This adds a sense of urgency to the problem, gradually increasing the skills shortage into a pending crisis.

We need more people, people!

According to a report by the Construction Skills Network (CSN), the construction industry would require almost a quarter-million additional workers by 2026 to meet the expanding demands in the UK building sector. Many employees have departed the UK as a result of Brexit, and some businesses have been downsizing throughout the pandemic. As a result, many construction firms are now experiencing a skilled labour shortage, which will disproportionately effect private housing, infrastructure, repair, and maintenance.

What can we do about it?

If we want to grow our businesses and bridge the skills gap, there are several things we can do to increase our chances of attracting and retaining high-quality employees going forward.

Provide opportunities for advancement in jobs

Young people want a future. So it’s critical to provide advancement opportunities in the roles we advertise, and to clearly express to prospective applicants how they may push themselves and climb the ladder within the industry. When you have great employees, it is critical to allow them to go into other positions and make your company the place where they want to advance their careers. This can mean the difference between employees leaving after a short amount of time and employees staying with the company for many years.

This is not only good for employee morale, but it also means that we will be able to keep personnel long enough to reap the benefits of their experience indefinitely. This will result in a workforce that is knowledgeable, experienced, and talented, allowing the industry to flourish into the future and contribute to its reputation. By promoting talented employees, we will be able to reduce the number of employees we have to hire from outside sources, lowering expenses and time spent.

Look after the workforce

While we obviously want to prioritise projects, deadlines, and profits, it’s equally critical to keep employees happy and satisfied at work. Once you’ve recruited exceptional people to your firm, it’s critical to assist them enjoy their roles while also allowing them to advance, so they may thrive and produce the best results for your organisation. Workers want to feel respected and heard at work, therefore establishing a strong line of command in management is critical. It also serves as a welcoming and warm face for new employees, allowing them to get up and running right away.

When things get hectic and deadlines approach, remember to take the time to listen to your employees’ suggestions and recognise their accomplishments. Employee of the Month programmes and mentions in company newsletters are excellent ways to reward employees and make them feel valued and appreciated for their efforts. Smaller things like company socials and celebrating staff birthdays or work anniversaries are also great extra touches to make every worker feel appreciated and welcome.

Widen the search

Try broadening your recruitment process by speaking at schools and colleges about available placements and programs. Some students might not think about taking on a career in construction due to the lack of representation, so some encouragement and information can be all they need to get interested. Sending a diverse representation from your company into these establishments can immediately make a difference too, and this might encourage applications to your company from young people of a variety of backgrounds.

In summary

If the building sector is to provide three million new social homes over the next 20 years to address the housing crisis and address the 11,000+ homes throughout the UK that have been empty for 10 years or more, it must have a dedicated and capable workforce.

Ultimately, the best way to attract new talent so sorely needed by the industry today is to make sure the construction industry is a positive place to be. Ergo: If you build it, they will come!

Did you know that 2020 was one of the warmest, as well as one of the wettest and sunniest, on record? Weather in the UK is becoming increasingly unpredictable and scientists state that extreme weather will affect Britain more regularly as a result of climate change. Is moderate British weather rapidly becoming a thing of the past? How will this affect construction? MMC Editor Joe Bradbury discusses:

 

The climate in the UK is already shifting. The degree of warming observed in Britain is generally consistent with what is also being observed globally, indicating that our overall environment is becoming both wetter and warmer.

Weather records

The UK’s weather records date back hundreds of years. We’ve been keeping track. For example, a series of temperatures for central England goes back to 1659, while other temperature records reach back as far as 1884. Analysis of this enormous body of data shows that the most recent 30-year period (1993-2022) is 0.9C warmer than the earlier 30-year period (1963 to 1992), and the UK has had an average 6% increase in rainfall over the more recent period.

Long-standing industry studies have shown that the UK’s unpredictable weather can cause disruption and delay to construction projects. Could this be another incentive for the building sector to embrace Modern Methods of Construction, which offers a more reliable environment in the face of more erratic and sometimes dangerous weather conditions?

Increasingly erratic conditions

The recent heat wave has been unwelcome (to put it mildly) in a sector that has faced challenge after challenge in recent years and aspires to return to pre-Covid levels of production.

Although there is currently no established legal limit on how high outdoor temperatures can be beforework ceases, companies nevertheless have a duty of care to their staff. Dehydration, lightheadedness, fainting, heat stroke and an increase in the risk of skin cancer can all be brought on by excessive heat and sun exposure. The previous notion of making hay whilst the sun shines is now being thrown into repute.

Historically, the building industry has always benefitted from the UK’s dry summer months. However, if our summers are to get hotter and heatwaves to become more commonplace, do we anticipate a time when outdoor temperatures and conditions may impede proceedings? Indeed, some trade unions are already calling for restrictions on allowing workers to be exposed to high outside temperatures – as well as low.

It isn’t just the summer that is expected to be affected. Although UK’s average annual temperature will (and is) rising due to global warming, this does not indicate that all of our seasons will get warmer. In fact, most climatologists believe that future winters in the UK will be colder and harsher, in spite of summers being significantly hotter.

The climate in Britain is becoming significantly wetter than in the past, as a result of the globe warming. This is due to the effect of greenhouse gases on our atmosphere.

Because greater greenhouse gas concentrations warm the air and increase the moisture that feeds storms, extremely rainy periods and the accompanying flooding are getting worse. UK infrastructure was not designed to withstand the type of rainfall, heatwave temperatures, cold spells and storms that are anticipated to occur more regularly; these extremes are likely to pose increasingly serious issues as time progresses.

How weather impacts construction

Rainy weather can result in a variety of delays and problems. Severe storms and strong winds can exacerbate already difficult operating circumstances. A building site may experience delays due to storms with strong winds. We are forced to avoid utilising lifting machinery or equipment while gales are blowing because the wind can make it harder to work safely and efficiently and can increase the quantity of dust being thrown around.

A building site is also significantly more affected by the cold than you might initially believe. In addition to being hazardous for the employees, these conditions can also influence the machinery, creating a variety of hazards on a building site with the introduction of ice and frost. The placement of foundations, slabs, and brickwork is slowed down by the need to wait longer for concrete to set in colder weather, which adds time to the total schedule. The cold might also have an influence on our supply chain, in addition to the building site itself.

When working on a building site, dry and warm weather that is neither too hot nor too cold and devoid of rain is ideal. However, this poses its own set of issues if it becomes overly hot and dry. It can be hazardous for your workforce to operate in the hot sun. Additionally, dry heat can increase the amount of dust and airborne filth, which is hazardous for your employees to breathe in and can harm some equipment, clog filters and reduce overall efficiency.

It’s also crucial to take into account the effect on the site and the materials. Extreme heat can have an impact on a wide variety of materials, including concrete and brick. For example, if the bricks get too dry, they can weaken the masonry and generally lower the quality of a building.

The benefits of MMC

Due to less reliance on HGVs, the geographic concentration of MMC personnel within one or fewer facilities, and a decrease in pollution and waste, the advantages of MMC are frequently future-focused and centred on the reduction of emissions.

The recent heatwave has brought the consequences of not adopting MMC to high enough a level into stark view.

Efficiency is something MMC can provide for the industry, and according to the NHBC, 81% of developers feel that this is a major element in the adoption of MMC processes. When it comes to building processes and materials, the ability to maintain consistent climate and conditions within factory-controlled environments means that the properties of materials do not change, e.g. timber does not swell due to moisture, cement and bonding agents are able to set, etc., so the manufacturing process is unaffected along with a reduction in material waste.

At the human level, days lost due to weather (rain, wind, snow, or heat on any particular day) can be written off, negating the risks associated with working outside, a factor that is expected to worsen again as temperatures become increasingly volatile.

Buildings fit for our future

It is more crucial than ever that our structures, especially our homes, can function as they were intended to as we adjust to a world with colder winters, warmer summers, droughts, and floods. That raises the issue of workmanship quality; if passive cooling or thermal efficiency techniques need on tolerances that cannot be met, there is little use in an architect creating them. MMC has an additional advantage in that it delivers a more predictable product with fewer flaws because to the production procedures and, ultimately, superior quality control.

In summary

 

Now’s the time to give MMC and the advantages it provides the care and consideration they deserve as the industry seems to face one issue after another. It is true that MMC is not always the greatest option for a project, and traditional building techniques will always have their place. However, we’re setting ourselves up for a fall if we do not pay attention to the changing environment we find ourselves operating within. Let’s deliver a built environment to be proud of; one that serves us well in uncertain times.

Optimists often say that every cloud has a silver lining. Despite the fact that Covid-19’s effects are still being felt throughout the world more than two years later, a new industry analysis suggests that, tragedy aside, the epidemic has left the UK construction industry with some beneficial side effects. Buildingspecifier.com Editor Joe Bradbury investigates:

Are you a glass-half-empty person, or a glass-half-full? In other words, can you draw any positives from tragedy that might make undergoing the suffering less meaningless? What have we learned about ourselves and one another throughout the coronavirus crisis that might help us forge a path into a brave new world, post-COVID?

A rare disaster in the form of a pandemic temporarily brought the world to its knees. Countries have spent the last couple of years scrabbling to fight an invisible enemy, as the world went in lockdown. The subsequent collapse in activity that has resulted from this is unlike anything experienced in living memory; the word ‘unprecedented’ is bandied about in daily parlance.

Every cloud…

Despite the fact that Covid-19’s effects are still being felt more than two years later, the UK construction industry may have actually benefited from the epidemic, according to a new analysis from the Chartered Institute of Building (CIOB).

The report, titled “Learning from the Covid-19 pandemic to strengthen the construction industry,” examines how changes made during the pandemic in the sector have helped resolve long-standing problems, such as cooperation and communication between contractors and clients, flexible work schedules, payment procedures, and employee wellbeing.

It uses the construction of Nightingale hospitals as an illustration of how more effective teamwork, communication, and flexible working on a scale not generally associated with the construction business, led to projects being finished in just nine days. Lessons learned from such projects, according to the CIOB, must continue to develop the construction sector for everyone involved—not just the people who work in it.

Daisie Rees-Evans, Policy and public affairs officer at CIOB, said “Covid-19 had a monumental impact on people’s lives and livelihoods with businesses needing to adapt how they operate to keep their workers safe while staying financially afloat. Since the outbreak of the virus in the UK, we have seen a shift in business practices with construction seeing large improvements in supply-chain collaboration, access to hygiene facilities and provision for worker wellbeing.

“Our report reflects on the progress that’s already been made and what further opportunities can be harnessed to deliver change that positively impacts construction businesses, workers and the communities they build for. With the UK Government committing to procuring for social value, the publication of our report is timely in its approach to seek true cultural change.”

Being paid on time

In a recent CIOB survey of 1,400 construction SMEs, more than half reported that since the pandemic struck, payment times, hygiene facilities, and mental health support had improved. Temporary measures that had been put in place to keep the industry operating safely during lockdown have since become routine, according to these respondents.

Overall, 52% of survey participants reported seeing a reduction in the amount of time it takes for clients to pay them since the outbreak, with more than half reporting that they now receive payments in 40 days or fewer. In 2017, the Federation of Master Builders (FMB) conducted a poll that revealed less than one-third of construction SMEs received payment from clients or large contractors within 30 days, and nearly one-quarter had to wait more than four months.

Although this is a step in the right direction, the CIOB research shows that the majority of SMEs still prioritise reducing payment terms to under 30 days, supporting CIOB’s recommendation in the report for the Government to review its Prompt Payment Code. The code was updated in the middle of the pandemic in 2021 to guarantee that individuals who signed up compensated small businesses within 30 days, but signing up is still optional, and as of January this year, there were only 3,500 signatories.

Paul Singh, Commercial director at project and programme management consultancy, EEDN, commented: “The pandemic has definitely increased collaboration and empathy within the industry from clients to consultants and contractors, opening up dialogue and reducing the adversarial approach.

“Construction has really taken note of the need to prioritise mental health and wellbeing. Projects are now defined with a new, hybrid way of working in mind and spaces have wellbeing built right into them.

“We have also seen greater proactivity when it comes to invoicing and payments, with invoices often being settled before the payment period is up. There is undoubtedly still a lot of work to be done but the signs are certainly encouraging.”

In summary

What we have just been through as a nation is unprecedented. Brexit and the election, once permanently on everybody’s lips were replaced with a chronic sense of fear and uncertainty. We still don’t fully know how this will affect construction over the coming years and decades, but we do know that the impact will be felt. In order to build ourselves back up, we will need to put our differences aside and work collectively as an industry.

Putting builders at the heart of apprenticeship development and training will unlock additional high-quality opportunities for young people and help Britain get back on its feet. We need an army of builders to help deliver the new homes that this country desperately needs. They will also upgrade our existing homes to make them more energy efficient and fit for purpose in the years ahead.

Buildingspecifier.com’s Joe Bradbury gives an overview of the evolution of construction through the ages; discussing humanity’s relationship to it, how it has shaped the modern world and how it might be in the future.

The evolution of building is inseparable from the evolution of man. One thing history and archaeology have proved undoubtedly is this; construction is a very old human activity. The need for a controlled environment to mitigate the effects of climate is a basic part of survival. So initially, construction was void of aesthetic purpose, instead being purely functional. Constructed shelters were one means by which human beings were able to adapt themselves to a wide variety of climates and become a global species.

Human shelters were initially relatively basic and may have only been used for a few days or months. But through time, these flimsy, temporary designs strengthened, developing into forms as complex as the igloo. As humans transitioned away from being nomadic and began to settle in one spot for extended periods of time (due largely to the development of agriculture), more robust creations gradually began to form. The first shelters were homes, but as time and skill progressed, distinct structures began being constructed for other purposes, including for food storage and ceremonial use.

A variety of trends have characterised the history of construction. One is the growing robustness of the materials used. Early building supplies like leaves, branches, and animal hides were perishable. Later, harder natural materials like clay, stone, and wood were utilised until finally, man-made materials like brick, concrete, metals, and plastics. Another is the pursuit of ever-higher and wider buildings, which was made feasible by the development of stronger materials as well as by the developing knowledge of how materials behave in order to decide where best to utilise them. The degree to which buildings’ interior environments are controlled—including air temperature, light and sound levels, humidity, odours, air speed, and other elements that affect people’s comfort—has recently undergone a third significant trend. The evolution of the energy available for the construction process, starting with human muscle power and progressing to the potent machinery used today, has propelled construction into the world we know today. For better for worse, we have tailored an enormous part of the environment we find ourselves in each day. Construction is everywhere.

Construction couldn’t be further from its simple roots. The whole process now is infinitely complex. A variety of building systems and products are available, most of which are targeted towards certain markets or types of buildings. Building design is now a highly organised process that involves a variety of stakeholders, including design professionals who identify user needs and create a building that satisfies those needs, people who adopt and enforce safety standards and research institutions that investigate intricately the properties and performance of materials. The manufacturing of building systems and products, the craftsmen who assemble them on the construction site, the contractors who hire and oversee the work of the craftsmen, and consultants with expertise in areas like construction management, quality assurance, and insurance make up the highly organised construction process of the present age.

Revolutions spark evolutions

Today’s construction industry contributes significantly to industrial culture, demonstrating its adaptability and complexity as well as its mastery of natural forces, which can result in a built environment with a wide range of diversity to meet the many sophisticated demands of society.

A fourth industrial revolution is currently underway, and anyone alive today has front row tickets; we’re right on the cusp of it! In contemporary history, the Industrial Revolution can be characterised as the transition from an agrarian and handicraft economy to one that is dominated by industry and machine manufacture. The 18th century saw the start of this process in Britain, which then spread to other regions of the globe.

The period from the middle of the 18th century until about 1830, (which modern historians refer to as the first Industrial Revolution) was largely limited to Britain. From the middle of the 19th century to the beginning of the 20th, Britain, continental Europe, North America, and Japan all experienced the second Industrial Revolution. With the emergence of electronics, telecommunications, and computers, the third revolution extended even wider. These new innovations fundamentally altered our civilization by making space exploration, digital research, and biotechnology possible.

The Fourth Industrial Revolution, which is currently well under way, is the convergence of numerous technological advancements in the areas of artificial intelligence (AI), robotics, the Internet of Things (IoT), 3D printing, quantum computing, etc.

Technology accelerates change

The phrase itself is a perfect description of how the lines separating the biological, digital, and physical worlds are constantly blurring. As digitalization and technology advance, so does our growing dependence on them; as a result, many goods and services we use in modern life are swiftly turning into necessities. Without GPS, virtual reality, BIM, robotics, and social media, where would we be today? Are we dependent on it? Will it be the catalyst for our success or downfall? Time will tell.

Where next?

Even a cursory look through trade publications will reveal how hotly contested the future of the construction sector is. Will it occur off-site? Will they be intelligent homes? What kind of dwelling will it be? What about modularity? Will it be enduring? We pose a lot of thoughtful questions and offer a lot of well-informed answers, but doing so is essentially like looking into a crystal ball.

We can all agree that it is impossible to remain the same in a world that is changing. It is well acknowledged that the construction industry has historically been hesitant to change. In fact, despite its enormous potential, offsite as an example has not yet been embraced to anywhere close to the levels it should be in order to meet modern demand and really address the present housing crisis.

Environmental motivations begin to take priority

Another thing that is taking the reins of how and why we build things now… the damages we are inflicting upon our environment are now coming back around as problems that we are having to engineer solutions to in order to overcome. This shapes the built environment massively and will only do so with increasing voracity as we move into the future.

The UK construction sector alone currently accounts for 32% of all landfill waste, 45% of all UK carbon emissions, and more incidents of water contamination than any other sector. Globally, the building industry is responsible for roughly 45–50% of the world’s energy use, close to 50% of its water use, and roughly 60% of its raw material usage.

We need to do something about that, and this too dictates trends.

In summary

It seems that construction and mankind are inseparable. We’ve grown up together, through the infancy of our early days as hunter gatherers to adolescence where we find ourselves now, making clumsy mistakes that have cost us dearly. As we transition into adulthood as a species and begin to take responsibility, the way we construct and build improves and continues to improve exponentially. We’re thinking differently now, and I’m excited to see where the evolution of built environment takes us. Perhaps into a brave new world?

Things seem to be changing so quickly now that the debate on whether or not change is a good thing is becoming irrelevant. Instead we are left with no choice but to adapt. But as an industry, we’re good at that. We’ve been changing since day one.

 

 

Market research indicates electric cars are becoming more and more popular, which is great news for our environment. However, inconsistent and patchy charging point coverage is currently standing in the way of progress. Range anxiety is now the biggest barrier to widespread electric car use across Britain today. How will our infrastructure and our built environment need to change to overcome this barrier? Buildingspecifier.com’s Joe Bradbury investigates:

 

Put simply, range anxiety is the fear that a vehicle has insufficient range in the battery to reach its destination, leaving the driver and their passengers stranded. The term, which is primarily used in reference to battery electric vehicles (BEVs), is one of the main given reasons as to why consumers are put off from buying an electric car.

 

The concern that users of all-electric vehicles may become stranded has led to public calls for extensive public charging networks. As of December 2013, Estonia is the only country that had deployed an EV charging network with nationwide coverage, with fast chargers available along highways at a maximum distance of between 40 to 60 km (25 to 37 mi), and a higher density in urban areas.

 

Electric cars are very much the future of the automobile industry and their adoption rate is rising rapidly throughout the UK and the rest of the world. In fact, sales of electric vehicles saw an 11% increase in the past year, bringing the total amount of UK registrations to 2%. This pales in comparison to the figures in Norway, where 48% of registered vehicles are now electric. By the year 2040, the UK government plans to phase out petrol and diesel vehicles in order to curb emissions and hit climate change targets.

 

Why electric cars matter

 

Air pollution from petrol and diesel cars and vans results in health bills of nearly £6bn every year in the UK, according to researchers at the universities of Oxford and Bath.

 

As to be expected, pollution is highest in cities, and diesel vehicles are the worst offenders in terms of harmful pollutants. In total, Oxford and Bath experts concluded the health cost of an average car in inner London over the vehicle’s lifetime was nearly £8,000. For diesel cars this figure was nearly double.

 

Pollutants such as nitrogen dioxide, particulate matter and PM2.5, found in exhaust fumes, have been linked with an array of health risks including lung cancer and heart disease.

 

Needless to say, something must be done.

The good news

 

The last few years have seen a remarkable surge in demand for electric vehicles in the UK – new registrations of plug-in cars increased from 3,500 in 2013 to more than 214,000 by the end of May 2019. There has also been a huge increase in the number of pure-electric and plug-in hybrid models available in the UK with many of the top manufacturers in the UK now offering a number of EVs as part of their model range.

 

Figures published by the Society of Motor Manufacturers and Traders (SMMT) each month show that electric car sales in the UK have risen dramatically over the past few years. While only around 500 electric cars were registered per month during the first half of 2014, this has now risen to an average of 5,000 per month during 2018.

 

By the end of 2018, almost 60,000 plug-in cars had been registered over the course of the year – a new record. This significantly improved upon the previous record, set in 2017, increasing it by more than 13,000 units. By the end of the year, plug-in cars as a proportion of total UK registrations reached 3.8%, and averaged over 2018 electric cars represented 2.7 per cent of the total new car market in the UK.

 

In the first five months of 2019, more than 22,000 plug-in cars have been sold, and a rolling 12-month total to the end of May has seen almost 60,000 new electric vehicles hit the road.

 

The bad news

 

Unfortunately, analysis suggests that a “patchy” network of charging points is currently preventing British drivers from fully embracing the benefits electric cars, something the government have said that they plan to address going forward.

 

The RAC have repeatedly stated the current network is the main deterrents for consumers considering a swap to electric cars. Over 35% of local authorities have ten or fewer locations where drivers can plug in their vehicles, with wide variation across the country.

 

Out of 385 authorities, only three had 100 or more charging locations. Milton Keynes was found to be leading the way with 138, followed by Westminster with 131 and Cornwall with 115. Overall, two thirds of local authorities were found to have 20 or fewer. Only one charging location was identified in Merthyr Tydfil, Caerphilly, North Dorset and Hinckley and Bosworth in the dataset.

 

The Department for Transport says 80% of charging is done at home, but for drivers who do not have access to off-street parking access to charging points is essential.

 

This is clearly a cause for concern; however it should not deter people from buying an electric vehicle entirely. The BBC’s Shared Data Unit analysed data from Open Charge Map, a crowd-sourced website of charging locations and found that electric vehicle owners can charge their cars in over 7,000 public locations across the UK, with the average distance between points ranging from 0.16km in Westminster to 10km in Craven, North Yorkshire.

 

The app currently does not feature all charging points across the country, but aims to be a “reliable single point of reference for charging equipment location information”.

 

What’s the remedy?

 

It’s clear to see then that range anxiety is a rational fear, given the current state of our infrastructure. However, studies also suggest that range anxiety may be exaggerated, concluding that most daily trips can be accomplished within the range of an inexpensive electric vehicle.

 

The main strategies to alleviate this anxiety among electric car drivers are the deployment of extensive charging infrastructure, the development of higher battery capacity at a cost-effective price, battery swapping technology, use of range extenders, accurate navigation and range prediction and availability of free loan vehicles for long trips.

 

Electric vehicle manufacturers are working hard to eradicate ‘range anxiety’ concerns through increased battery capacities to extend the vehicle’s range. For example, REVA has a proprietary technology called “Revive”, which is a battery reserve that can be released by electric vehicle users by texting or calling an operations center. Using a range extender solution, as implemented in the Chevrolet Volt or the BMW i3, the internal combustion engine switches on to recharge the battery before it is empty. Another method is the proposed Ridek modular vehicle approach whereby a vehicle’s chassis could be exchanged for one containing a larger-capacity battery at a network of chassis-exchange stations before embarking on a long journey.

 

It seems that since lack of information is an enormous contributing factor in causing ‘range anxiety’, a good navigation system with knowledge of the battery capacity and remaining distance can minimize the fear.

 

 

 

 

The COVID-19 epidemic has expedited technological development and the automation of many everyday jobs, from robots that deliver parcels to contactless cashiers. Many people are now worried that artificial intelligence (AI) could significantly increase automation and eliminate jobs in the ensuing decades. This isn’t the case. Buildingspecifier.com editor Joe Bradbury discusses:

Similar issues were raised as the internet expanded just a few decades ago. Despite scepticism, the technology led to the creation of millions of jobs worldwide.

It’s natural to feel a little uneasy when the robots and employment are brought up. After all, we frequently hear phrases like “a machine can do that, quicker and cheaper” or “one day when robots are doing our jobs.”

The fact, however, is much less frightful than these discussions and the sensationalism that surrounds the subject. In fact, artificial intelligence and automation are the next stage of digital growth for the construction industry.

Even though it may seem inevitable that some occupations will eventually be replaced by machines, there are more advantages to automation and AI than disadvantages, especially when you consider that these technologies are more likely to increase industrial productivity while also creating new jobs.

When thoroughly examined, automation in construction has far more positive effects on both the personnel in the sector and the people who ultimately benefit from construction projects.

Two of the strongest arguments for the sector adopting automation are listed below:

Safer working environment

Construction is most dangerous due to the physical demands of the work. The construction sector is one of the largest in the UK economy – employing 3.1 million people, or over 9% of the workforce.

Fatalities to construction workers in Great Britain have actually risen slightly over the last two years from 1.36 people per 100,000 in 2018/19 to 1.84 people per 100,000 in 2020/21. Over the whole of the last decade there has been a modest decrease in fatal injuries of just 2.44%.

Clearly, the job site poses hazards that other industries rarely match, which means construction stakeholders have a responsibility to take every available precaution to make the job safer.

Thank goodness advancements in automation and artificial intelligence provide significant potential to boost construction safety. AI and automation may be used to:

  • AI decreases intensive physical labour and the risk of errors and injuries caused by humans. Even though robots now outperform humans at many tasks, they are also learning quite quickly.
  • AI can replace high-risk jobs. This technology can not only replace mundane work but also hazardous ones. In mines, on underwater construction sites, and even in distant regions, machines are increasingly taking the place of human workers.
  • AI works with already-in-place safety equipment. Technology can be linked with already-in-place personal protective equipment (PPE), by alerting managers when staff members are present without PPE.

Additionally, machine learning is employed to recognise security issues more quickly. Some clever businesses are working on technology that can actually predict building accidents before they happen.

Reducing the labour shortage gap

While some complain that machines are snatching their jobs, there is in fact currently a significant labour shortage in the construction industry.

Robotics and automation, when used properly, can increase the effectiveness of the current workforce by filling in for vacant positions in certain occupations.

Robotics, for instance, can be used to carry out labour-intensive tasks like excavation and preparation work with less people. While the market catches up, these technologies can handle duties like driving heavy machinery and other vehicles, keeping the industry operational and preventing any negative effects on human stakeholders’ and those workers’ bottom lines from labour shortages.

AI can also help with labour planning, and automation in the building industry has significantly reduced the amount of necessary but repetitive physical labour. For instance, historically a project team member would be responsible for completing a process like making submission logs, which could take days or even weeks to generate, track, and manage. This can now be automated, freeing up the employees time so that it may be utilised more productively.

How to get ready for the future of constuction

So, with automation and AI at our disposal, how can construction firms get ready for a new way of working? It entails approaching everything with an open mind:

  • Be receptive to change. Companies with a strong history of digitization have a 50% higher chance of making money utilising AI. If your business isn’t there yet, try to start right away, even with baby steps.
  • Encourage staff growth and make wise hiring decisions. Consider training internal staff in the abilities required by impending automation. We must prepare our workforce for success in order for AI to succeed.
  • Choose employees who can keep up with the pace. Future building jobs will require a higher level of ability and more regular improvements.
  • Increase data collection efforts. The key component for artificial intelligence and automation to succeed in any business is data. It’s wise to be data-driven to improve AI’s future at your business, regardless of when you implement it—whether that’s in the next year or ten.

In summary

Artificial intelligence (AI) is regarded as one of the most revolutionary inventions in human history, and its transformative potential has already been seen by many. Unsurprisingly, some of the most advanced technologies we utilise on a daily basis are powered by AI-based breakthroughs.

Today, AI enables businesses, governments, and communities to create a high-performing ecosystem that will benefit everyone on the planet. Some of the most important issues facing society are being resolved as a result of its tremendous impact on human lives. Give it a chance!

 

When we watch movies, we witness characters moving and acting in enthralling environments, carefully selected or created to evoke the beautiful, the horrifying, the majestic. Designers and architects, on the other hand, watch films a little differently; they tend to be interested in how the background themes interact with the main theme through the film’s architectural layers. They start to notice and study the language and personality of all the structures depicted in these films and understand their role in crafting an evocative environment. Building Specifier editor Joe Bradbury discusses the correlation between movie and building:

Architects often strive to figure out how these structures came to be, pondering how they were constructed. They might even be able to picture the blueprints that would be required to bring the structure into existence. It’s hard to explain, but architects and designers know when they see an ambitious fictional building that could actually be perceived and imagined in reality. This pushes them to innovate and reach for the sky.

Science Fiction is one such genre that can be described as a no-holds-barred lens through which we might perceive the future of brave and rule-breaking architectural design. In fact, the last 50 years alone have proved that some films even hinted at technologies that later came to exist in the future, not long after their fictional inception.

Science Fiction throws the rulebook in the bin when it comes to city planning and building design. Unrestrained by the limits of planning policies, building codes, rules, regulations, red tape and logistics the human imagination is set free, allowing us, the viewer to experience gargantuan technological metropolises, brimming with richness and character.

In film, design aspects such as scale, proportions, colours, textures and forms can easily be given a deeper and intangible meaning. They not only depict larger-than-life scales, but often demonstrate the complex relationship between architecture and society, including scenes that display both the negative and good aspects of it.

Whilst observing these fictional environments, it’s wise to wonder “what lessons can be drawn from this?”

Films can act as architectural critique

Films frequently feature dystopic images. Ridley Scott’s ‘Blade Runner’, set in 2019 San Angeles, features an unforgettable futuristic, post-industrialist city, which is an excellent example of this. For those watching closely, the film is certainly a critique of the past and present, as well as a clear embodiment of the troubles engendered by this new urban condition. It serves as a cautionary tale about population growth, urban development, and unfettered capitalism.

 

How design influences our films

Needless to say, movies have an unquestionable impact on modern design and our cultural understanding of environments overall. However, the pendulum swings both ways and modern architecture, in turn, brings its creative aspect to the cinema, also – forming a continuous loop of inspiration.

Cinema is an art form in which architecture can play a prominent role. Architecture helps to add significance to a film’s story and to set the scene in terms of both location and time period.

Cinema allows for the preservation of old building as well as the invention of futuristic styles that have yet to be seen. It depicts architecture as we see it in our daily lives in the cities we live in, including both new and old buildings. Because architecture is used as part of the scenery for cinematic works, architecture and cinema are inextricably linked. It permits a city to be depicted in both a realistic and a fantastical manner.

Films can also be beneficial to urban planners since they help them to think about how cities will expand and evolve in the future. Architects can understand how the city is constructed in our collective imagination and how it might be represented in many ways, thanks to movies. One can watch something set in a dystopia and consider “what went wrong?” Conversely, one can watch a film about a Utopia and consider what steps would need to be taken in order to guide society towards this goal.

Hollywood’s link to construction

Many well-known actors and actresses in Hollywood have a background in architecture. Joseph Kosinski, the director behind blockbusters including ‘Tron Legacy’ and ‘Oblivion’, received his Master of Architecture from Columbia University in 1999. Instead of pursuing a career as an architect, Kosinki pursued a career in cinema, owing to his digital modelling skills, which he learned while studying architecture.

Following the completion of his thesis Beyond Mise-En-Scène: Narrative Through Architecture in Main Stream Cinema, Anshuman Prasad relocated to Los Angeles to pursue a career as a set designer. ‘Captain America: Winter Soldier’, ‘Girl With the Dragon Tattoo’, and ‘The Hangover’ are among his many blockbuster flicks.

Comparing the two

In many aspects, movie sets are comparable to building sites in that they require many separate, independent professional organisations that are constantly collaborating with new people on set/site – many of whom they have never met and will never encounter again.

The importance of timing, as well as logistics, coordination, and communication, cannot be overstated. Production facilities change while production moves forward at constantly-changing locations. Construction professionals and actors alike can expect unpredictable weather and daily variations from the schedule, however there is still the pressure that fixed production plans must be closely adhered to; otherwise affects upon the overall project will be severe.

On a building site, it only takes one tiny mistake to start an expanding problem-chain that can result in lost money, poor quality, accidents, conflicts, and so on. This is a scenario that is quite similar to what happens on a huge professional movie set on a daily basis: Consider any minor hiccup in the production plans for shooting a car chase through a city, or a sick main actor in a scheduled scene with rented animal trainers, child actors, weather dependencies, hundreds of extras, incorporating production into special effects design, signing a slew of permissions on a faraway location rented for the day, and so on.

In summary

There is certainly a strong link between the world of movies and the world of building design. Next time you stick one on, pay close attention to the backdrop – the unsung hero of cinema.

On February 24th 2022, Russia attacked Ukraine, escalating the Russo-Ukrainian War, which began in 2014 with the Ukrainian Revolution of Dignity (Maidan). With more than 5.2 million Ukrainians fleeing the country and a fifth of the population displaced, the invasion has triggered Europe’s greatest refugee crisis since World War II. Buildingspecifier.com Editor Joe Bradbury investigates how the conflict will affect construction.

The invasion has been widely denounced as an act of aggression around the world. The United Nations General Assembly passed a resolution calling for Russia’s military to be fully withdrawn.

Sanctions

The Ukrainian conflict has immediate, serious, and far-reaching economic ramifications. This is owing in part to the fast international response prompted by the conflict, with the United States, the European Union, and the United Kingdom (among others) enacting a series of substantial sanctions (many of which were joint and coordinated) against Russia. These numbers are steadily rising.

The sanctions imposed thus far have mostly targeted a number of sectors of the Russian economy, as well as certain military and political officials in Russia and Belarus, and have limited the importation of some Russian exports.

The impact on construction

The crisis in Ukraine and the resulting sanctions are already having an impact on the cost and availability of materials and equipment needed for construction projects. In the United Kingdom, this industry often has low profit margins yet requires substantial resources to complete projects. As a result, any disruption to supply chains swiftly results in financial difficulties. The battle will aggravate an already tumultuous market already beset by Brexit, COVID-19, shipping delays, inflation, and rising energy and fuel prices.

Given Europe’s substantial reliance on Russian gas and oil supplies, the conflict has had a significant influence on fuel prices, with both prices rising significantly. These prices are anticipated to stay high and rise further, raising the cost of materials used in projects that require a lot of energy to make and create, such as steel, bricks, plastics, and ceramics. Transportation expenses for construction equipment, plant, and supplies are also expected to rise.

According to data and analytics firm GlobalData, the construction industry in Eastern Europe is expected to contract by 3.4% in 2022 as a result of the prolonged conflict between Russia and Ukraine.

Recent research from GlobalData reveals that economies with strong ties to Russia would be the most affected, but the conflict will have rippling effects throughout the area, with higher energy and raw material prices, as well as a loss of trust in the region from project investors.

The worst affected market, of course, will be that of Ukraine, which is forecast to fall by 69.1%.

Joel Hanna, Economist at GlobalData, said “Construction in most countries in Eastern Europe is likely to be affected by rising energy prices, exacerbated supply chain disruptions and local currency devaluations owing to weakened investor confidence in the region over the uncertainty of the Russia-Ukraine crisis. Moreover, household income squeezes are likely to weaken demand and undermine growth in commercial construction projects, while rising construction costs will push housing prices higher, reducing demand for residential construction.”

He added “Construction costs in Eastern Europe are already rising owing to the post-pandemic demand rebound and supply-side shortages pushing up raw materials prices and shipping costs. The crisis in Ukraine adds significant upward pressure to construction costs in 2022, which will eat away further at project profitability, dampening the outlook for construction activity in the near future.”

In summary

It is still too early to tell how sanctions against Russia may affect construction materials. However, bricks, aircrete blocks, roof tiles, steel lintels, cable trays and trunking, manhole covers, gas boilers, and some electrical products are still in short supply.

Some argue that price inflation, caused by a shortage of raw materials, rising energy, freight and labour costs is of greater concern than availability. So far this year, many firms have announced price increases of 5-10%, with energy-intensive products seeing rises of up to 20%.

While road haulage problems have lessened as the shortage of HGV drivers has reduced, transport costs remain high, with shipping rates still eight-to-nine times higher than pre-covid levels and air cargo rates seven times higher.

Meanwhile, the impact of the Ukraine conflict and following Russian sanctions on the supply of building materials in the UK is still to be determined.

Only 1.25% of building supplies shipped into the UK last year came from Russia, Ukraine, and Belarus. However, increased prices of raw materials needed in the making of steel, such as aluminium, copper, bitumen, pig-iron, and iron ore, may have an impact on prices.

Increasing costs in more exposed European markets could have an impact. Sanctions against individuals with links to the regime in Russia and firms with Russian ownership could also affect the UK supply chain.

So in answer to the question, how will the Ukraine conflict affect construction, the answer is – watch this space.