Posts

 

David Connacher, Marketing Manager of West Fraser, discusses the many stakeholders responsible for the success or failure of a building

 

 

 

 

 

When judging the success or failure of a building, it is often the architect who comes under scrutiny. After all, architects have overall responsibility for a building’s design, aesthetics and functionality. What is easily forgotten is that they are interpreting their client’s ideas and being influenced and constrained by conventions and regulations; they are grappling with the requirements of planners and end users, not to mention the limitations of budgets.

 

Quite simply, a building is not just an architect’s challenge. In reality, many stakeholders must take responsibility when blame – or credit – is apportioned for how a building works and its wider impact. Equally, the idea that architects can save the planet through their work is flawed.  They can formulate ideas but, essentially, they are bit players in the grander scheme of things.

 

Buildings account for nearly 40% of global energy-related carbon emissions* and have a significant impact on our natural habitats. We are all culpable and, instead of expecting architects to design our way out of the climate emergency, we must collectively instigate a paradigm shift in our behaviour. Buildings have to become self-sustaining but, even to come close to achieving this goal, stakeholder and societal values have to change and government and industry must actively accept responsibility rather than simply spouting hyperbole.

 

End-users play a critical role. Their behaviour determines whether a building achieves its intended purpose. Even the most energy-efficient buildings will fail to deliver sustainability goals if occupants misuse systems or ignore the basic principles of how a building works. Similarly, even the best designed and constructed buildings will quickly fall into disrepair if poorly maintained.

 

We cannot go on prioritising low-cost, mediocre solutions over quality and sustainability. To play a part in mitigating the climate emergency, buildings have to be enduring, durable and innovative assets created through a collaborative and holistic approach.

 

LINK


CLICK HERE FOR THE WEST FRASER WEBSITE

or call 01786 812 921 for further information

 


 

Photograph by Unsplash

 

Architects are on the front line when it comes to achieving net zero carbon and reversing the status quo in an age where buildings contribute to around 40% of global energy-related carbon emissions. As the Royal Institute of British Architects notes, “The climate emergency is the biggest challenge facing our planet and our profession. To have significant impact, we need to turn warm words into meaningful actions.”

 

Geopolitical instability, economic uncertainty and an underlying energy crisis are constraints that only reinforce the need for urgent measures to address the sustainability of our built environment. Architects have the capacity to embed and encourage sustainable design strategies at each work stage. They can help their clients reach net zero by creating buildings that have no net carbon emissions during their construction and operation. This applies not only to new buildings but to retrofitting existing buildings to prepare them for a low-carbon future.

 

Choices made at the design stage are critical, contributing directly to the net zero goal. Using sustainable, natural, low-carbon building materials, such as timber, is crucial and allows carbon to be sequestered within the structure. Durable, high-quality materials will reduce long-term maintenance and replacement, creating buildings that last and lock up carbon. A building’s lifespan will also be extended by building in flexibility so it can be adapted to new uses in the future.

 

Second only to a fabric first approach that ensures the highest possible thermal performance and airtightness of the building envelope, comes energy. Often the remit of a variety of consultants, architects should, nonetheless, see the correct specification and integration of everything from solar panels to thermal stores as part of a necessarily multi-faceted approach.

 

In the race to net zero, architects carry an unprecedented responsibility to bring together and educate all those involved in the design, planning and building processes to ensure the best result for their client and the planet.


For further information call 01786 812 921

OR CLICK HERE TO VISIT THE WEST FRASER WEBSITE

 

 


 

Rinnai’s Chris Goggin explores how wider electrification of the UK domestic & commercial energy mix could influence decarbonisation efforts and customer choices of heating and hot water appliances.

Will Britain’s national electrical grid hold the capability of handling extra demand?

As part of the recent “Powering Up Britain” Govt document, wider electrification was specified as a key strategic aim in decarbonising the UK. Future domestic & commercial & industrial energy will be provided through several ways, one method of decarbonisation will focus on producing sustainably sourced and cheap electricity for UK customers.

There is a series of logical steps if NetZero is to be achieved by 2050. If the UK is going to proceed with decarbonisation through electrification, then providing the electricity for the mass use of electric vehicles will be key. To power an Electric Vehicle (EV) requires the widespread availability of charging points across the UK. There are over 33 million vehicles on the UK’s roads, the majority of which will require electricity.

Can current National Grid capacity cope with increase of electric vehicles AND the demand surge for domestic, commercial and industrial usage facilitated through wider UK electrification?

A BBC article published just recently has revealed that clean energy projects are being put on hold due to a lack of electrical grid capacity. Some renewable energy companies believe this lack of electrical grid capacity could potentially negate the progress of UK NetZero targets.

It has been estimated that the UK requires five times more solar power and four times as much wind generation than what is being presently manufactured. All of which will need to be connected to the national grid. The BBC report estimated that £200 billion of clean energy projects are waiting to be connected with 40% of these projects facing at least a year of further procrastinating.

UK decarbonisation aims are centred on the dispersal of clean and cheap electricity. However, relying on renewables in the short term to completely satisfy national energy supplies is not risk adverse. Renewable power yield relies on weather conditions that seasonally fluctuate.

Although possible, there are still theoretic and technical challenges that require addressing before the UK electric grid can be considered capable of handling both wider national electrification and the inclusion of EV’s on UK roads.

Electricity is generated through various renewable and non-renewable practises such as wind, solar, tidal, nuclear and natural gas. Although UK energy policy makers are keen on reducing and eventually phasing out fossil fuel usage altogether, natural gas has been recognized as a key decarbonising transitional fuel source, as it is used in times of low wind yield to produce electricity (wind being the second highest contributor to UK electrical generation at 25%).

UK policy makers have identified cheap and sustainable electricity as a main contributor to national decarbonisation efforts. As a result, the UK’s electrical capacity grid will have to be expanded. ‘Powering up Britain’ also states that energy independence can be achieved through potentially doubling Britain’s electrical capacity by 2030 whilst ensuring cost effective electrified power.

To provide continuity to UK home market energy supplies, a baseload of power is dispersed to communities throughout the UK. A baseload of power ensures that the minimum requirement of national demand is constantly met. Baseload energy demands are satisfied via energy sources that are cost effective and readily available, such as natural gas.

Dispatchable power are separate sources of energy that are utilized in times of peak demand. Throughout the calendar year the UK power grid will experience times of pressure where it is a necessity to incorporate additional energy to cope with demand and output.

Current capacity of the UK electrical grid stands at 334.2 TWh (terawatt-hour: a unit of energy equal to one trillion watts for one hour). It is estimated that with the inclusion of electric vehicles will create an additional 100TWh demand increase. That, in rounded terms, means an increase of about one third of current levels.

The UK electrical grid is designed to coincide with seasonal and daily peak times of demand. For example, in a seasonal context the demand for electricity is far higher in January then it is in July. Daily electrical demand rhythms are similar – evening demand is far higher than in mid to early afternoon.

Developments in technology, energy efficiency and inclusion of renewables mean that the UK electric grid needs to be positioned to deal with further output demand created by the anticipated but not guaranteed widespread EV adoption across the UK.

Work will also continue to develop V2G (vehicle-to-grid) technology that allows electric car owners to send excess un-used electricity back to the grid when demand is high further creating grid flexibility.

Inter-continental grid connections to countries such as France, the Netherlands, Ireland, Belgium and Norway are connected to the UK through sub-sea cables. This means the UK grid can access power from other nations in times of high demand and system stress, as well as import and export at financially beneficial rates.

The recent “Powering Up Britain” paper stated the UK government’s aim to accelerate delivery of strategic transmission upgrades by at least three years with the specific aim of reducing delivery time in half to UK customers. The Electricity Networks Commissioner will be advising the UK government on how to accelerate grid delivery and will present recommendations to ministers in June.

Rinnai understands the complexity of UK decarbonisation efforts and we are committed to informing UK customers on the detail and impact of current and future energy policy as well as shifts in the energy landscape that could affect customer cost.


CLICK HERE TO VISIT THE RINNAI WEBSITE

 

or HERE to EMAIL RINNAI

 

CLICK HERE For more information on the RINNAI product range

 


RINNAI’S H3 DECARBONISATION OFFERS PATHWAYS & CUSTOMER COST REDUCTIONS FOR
COMMERCIAL, DOMESTIC AND OFF-GRID HEATING & HOT WATER DELIVERY

                                                   

Rinnai’s H3 range of decarbonising products include hydrogen / BioLPG ready technology, hybrid systems, and a wide range of LOW GWP heat pumps and solar thermal. Also, within Rinnai’s H3 range is Infinity hydrogen blend ready and BioLPG ready continuous flow water heaters which are stacked with a multitude of features that ensure long life, robust & durable use, customer satisfaction and product efficiency.

Rinnai’s range of decarbonising products – H1/H2/H3 – consists of heat pump, solar, hydrogen in any configuration, hybrid formats for either residential or commercial applications. Rinnai’s H3 range of products offer contractors, consultants and end users a range of efficient, robust and affordable decarbonising appliances which create practical, economic and technically feasible solutions. The range covers all forms of fuels and appliances currently available – electric, gas, hydrogen, BioLPG, rDME solar thermal, low GWP heat pumps and electric water heaters.

Rinnai H1 continuous water heaters and boilers offer practical and economic decarbonization delivered through technological innovation in hydrogen and renewable liquid gas ready technology.

Rinnai’s H1 option is centred on hydrogen, as it is anticipated that clean hydrogen fuels will become internationally energy market-relevant in the future; Rinnai water heaters are hydrogen 20% blends ready and include the world’s first 100% hydrogen-ready hot water heating technology.

Rinnai H2 – Decarbonization simplified with renewable gas-ready units, Solar Thermal and Heat Pump Hybrids. Rinnai H2 is designed to introduce a practical and low-cost option which may suit specific sites and enable multiple decarbonisation pathways with the addition of high performance.

Rinnai H3 – Low-GWP heat pump technology made easy – Rinnai heat pumps are available for domestic and commercial usage with an extensive range of 4 – 115kW appliances.

Rinnai’s H3 heat pumps utilise R32 refrigerant and have favourable COP and SCOP.

Rinnai is a world leading manufacturer of hot water heaters and produces over two million units a year, operating on each of the five continents. The brand has gained an established reputation for producing products that offer high performance, cost efficiency and extended working lives.

Rinnai’s commercial and domestic continuous flow water heaters offer a limitless supply of instantaneous temperature controlled hot water and all units are designed to align with present and future energy sources. Rinnai condensing water heaters accept either existing fuel or hydrogen gas blends. Rinnai units are also suited for off-grid customers who require LPG and BioLPG or rDME.

Rinnai products are i2HY20 certified, A-rated water efficiency, accessed through multiple fuel options and are available for purchase 24/7, 365 days a year. Any unit can be delivered to any UK site within 24 hours. Rinnai offer carbon and cost comparison services that will calculate financial and carbon savings made when investing in a Rinnai system. Rinnai also provide a system design service that will suggest an appropriate system for the property in question. Rinnai offer comprehensive training courses and technical support in all aspects of the water heating industry including detailed CPD’s. More information can be found on Rinnai’s website and its “Help Me Choose” webpage.

 


 

From Waste to Wow: TRILUX and Skanska’s circular lighting project saves 17 tonnes of CO2e and creates an inspiring workplace

UK, May 2023 – Skanska, a leading construction and development company committed to reducing carbon emissions, partnered with TRILUX to provide a sustainable and inspiring workplace for its UK head office. The project aimed to introduce more efficient lighting to match the existing look and type of luminaires, providing lighting control with minimal impact on carbon emissions.

Skanska, one of the world’s biggest construction firms, recently relocated its UK head office to Leavesden, Watford.

The goal was to create a smart, sustainable, and inspiring workplace that served as an agile hub for collaboration and digital work. The objectives of the new lighting within the new office were:

  • Reduce the lighting output to be more suitable for an office working environment
  • To match the look/type of luminaires within the existing office areas
  • Introduce lighting controls to enable areas to be adapted to the meeting environments.
  • Ensure that the new areas would be energy efficient

 

The Take Back Scheme

TRILUX engineered a solution to retain the existing fittings where possible and implemented a Take Back scheme for the old LC60 linear luminaires. The team took back the linear lengths of luminaires and stripped them down for repurposing and recycling. This included reusing all salvable material i.e. luminaire housing, terminal blocks, end caps and even the wire suspensions. The refurbished luminaires were updated with energy efficient LEDs and drivers.

Refurbishing for a more comfortable working environment

Additionally, it was noted that the existing linear lighting covering the open plan areas, initially designed for a call centre at 6000K, was too bright and cool in appearance, with the potential to cause headaches after a short period of time. TRILUX conducted testing to adapt the colour temperature of the existing fittings. The process involved filters; the team came to the site with calibrated lighting testing equipment, and a special amber filter was introduced and trialled to render the colour temperature of the existing fittings closer to 4000K to give a much warmer appearance while reducing the light output to suit the lighting requirements. These were fitted to the existing luminaire diffusers to seamlessly adapt the fittings without major work.

 

Reduced transport emissions

TRILUX ensured minimal packaging, one-trip collection, dismantling, documenting, photographing, and labelling of all components to reduce carbon emissions in transport and waste.

The project was delivered efficiently on time, and to budget. By refurbishing 650m of lights at Leavesden Park (via the use of colour filters) rather than buying new, Skanska has saved approximately 17 tonnes of CO2e as fewer raw materials were used. It is also important to note that outside of this figure, additional raw materials and carbon were saved by splitting some existing longer linear lengths of light to repurpose as shorter lengths. In both cases, waste was reduced, as less existing lighting had to be disposed of.

By repurposing, refurbishing and recycling luminaires and components, TRILUX and Skanska demonstrated their commitment to circularity and sustainability, contributing to a greener future.

Reece Bannister, MEP Project Manager at Skanska comments,

“Working with TRILUX on this project has been a positive experience and has built on our good relationship. They are a company that understands our values and goals. As a result, we were able to discuss how we could achieve our carbon reduction objectives by not stripping out, throwing the luminaires away and buying new. Working together, we found solutions that gave colleagues a great new office to work in.”


 

CLICK HERE For further information on TRILUX

 


 

RINNAI HYDROGEN BLENDS READY 20% CONTINUOUS

FLOW WATER HEATERS BEATS STORED WATER

SYSTEMS AT PREMIER LEAGUE CLUBS 

Property experts and contractors have completed the installation of a complete new hot water delivery system at a top London Premiership football club, replacing an outdated stored cylinder configuration with a practical and economic hot water solution. The renowned club replaced their old traditional system with a specifically designed new energy efficient Rinnai continuous flow delivery on demand water heaters that offer and are certified for Hydrogen blends of up to 20%.

Rinnai water heating systems have been installed in almost all top UK Premiership clubs in the UK. The latest installation was completed at a stadium which is less than 20 years old and was considered ‘state-of-the-art’ once completed. The club had initially utilised a traditional stored system where hot water is kept heated until required. The new system is capable of delivering over 9000 litres of temperature controlled hot water each and every hour, non-stop.

A premiership football club will have huge peaks of demand and the site simply cannot afford to run out of hot water on match days. The demand is for the kitchens, the catering, the hospitality, the toilets and the extensive wash and showering facilities.

Continuous flow systems heat water upon demand meaning that fuel is only used when the system is operational.

The installation completed at this London premiership club included a manifolded bank of 10 Rinnai Sensei N series 1600i continuous flow water heaters together with the Nexus scale protection and a BMS Integration. All units featured Rinnai commissioning to secure long term warranty guarantees.

For Rinnai Ricky Lewis, Associate Director Corporate Sales, said, “We were able to demonstrate that the Rinnai system can yield financial reductions of nearly 20% of the running cost, over 30% of the upfront cost, over 15% in carbon footprint, over 75% in space, over 85% in weight compared to heated storage systems, creating a highly practical and economic solution for the client whilst lowering onsite carbon.”

Rinnai continuous flow water heaters are an integral part of the organisations H1 initiative which aims to utilise natural gas, Hydrogen blends, Hydrogen, LPG and Bio-LPG to lower onsite emissions. Rinnai continuous flow units are typically 30kg – a one-man lift, making the entire installation process far easier. Two sizes are available – 47kW and 58kW. Both produce 774 and 954 litres per hour at a 50-degree rise respectively.

Rinnai H1 continuous water heaters and boilers offer practical and economic decarbonization delivered through technological innovation in hydrogen and renewable liquid gas ready technology. Rinnai’s H1 option is centred on hydrogen, as it is anticipated that clean hydrogen fuels will become internationally energy market-relevant in the future; Rinnai water heaters are hydrogen 20% blends ready and include the world’s first 100% hydrogen-ready hot water heating technology.

Rinnai H2 – Decarbonization simplified with renewable gas-ready units, Solar Thermal and Heat Pump Hybrids. Rinnai H2 is designed to introduce a practical and low-cost option which may suit specific sites and enable multiple decarbonisation pathways with the addition of high performance.

Rinnai’s complete range of hot water heating units are available for next day delivery on orders placed before the previous mid-day.

 

RINNAI’S H3 DECARBONISATION OFFERS PATHWAYS & CUSTOMER COST REDUCTIONS FOR COMMERCIAL, DOMESTIC AND OFF-GRID HEATING & HOT WATER DELIVERY

Rinnai’s H3 range of decarbonising products include hydrogen / BioLPG ready technology, hybrid systems, and a wide range of LOW GWP heat pumps and solar thermal. Also, within Rinnai’s H3 range is Infinity hydrogen blend ready and BioLPG ready continuous flow water heaters which are stacked with a multitude of features that ensure long life, robust & durable use, customer satisfaction and product efficiency.

Rinnai’s range of decarbonising products – H1/H2/H3 – consists of heat pump, solar, hydrogen in any configuration, hybrid formats for either residential or commercial applications. Rinnai’s H3 range of products offer contractors, consultants and end users a range of efficient, robust and affordable decarbonising appliances which create practical, economic and technically feasible solutions. The range covers all forms of fuels and appliances currently available – electric, gas, hydrogen, BioLPG, rDME solar thermal, low GWP heat pumps and electric water heaters.

Rinnai H1 continuous water heaters and boilers offer practical and economic decarbonization delivered through technological innovation in hydrogen and renewable liquid gas ready technology.

Rinnai’s H1 option is centred on hydrogen, as it is anticipated that clean hydrogen fuels will become internationally energy market-relevant in the future; Rinnai water heaters are hydrogen 20% blends ready and include the world’s first 100% hydrogen-ready hot water heating technology.

Rinnai H2 – Decarbonization simplified with renewable gas-ready units, Solar Thermal and Heat Pump Hybrids. Rinnai H2 is designed to introduce a practical and low-cost option which may suit specific sites and enable multiple decarbonisation pathways with the addition of high performance.

Rinnai H3 – Low-GWP heat pump technology made easy – Rinnai heat pumps are available for domestic and commercial usage with an extensive range of 4 – 115kW appliances.

Rinnai’s H3 heat pumps utilise R32 refrigerant and have favourable COP and SCOP.

Rinnai is a world leading manufacturer of hot water heaters and produces over two million units a year, operating on each of the five continents. The brand has gained an established reputation for producing products that offer high performance, cost efficiency and extended working lives.

Rinnai’s commercial and domestic continuous flow water heaters offer a limitless supply of instantaneous temperature controlled hot water and all units are designed to align with present and future energy sources. Rinnai condensing water heaters accept either existing fuel or hydrogen gas blends. Rinnai units are also suited for off-grid customers who require LPG and BioLPG or rDME.

Rinnai products are UKCA certified, A-rated water efficiency, accessed through multiple fuel options and are available for purchase 24/7, 365 days a year. Any unit can be delivered to any UK site within 24 hours. Rinnai offer carbon and cost comparison services that will calculate financial and carbon savings made when investing in a Rinnai system. Rinnai also provide a system design service that will suggest an appropriate system for the property in question. Rinnai offer comprehensive training courses and technical support in all aspects of the water heating industry including detailed CPD’s. More information can be found on Rinnai’s website and its “Help Me Choose” webpage.


CLICK HERE TO VISIT THE RINNAI WEBSITE

   OR CLICK HERE TO EMAIL RINNAI DIRECT

CLICK HERE FOR MORE INFORMATION ON THE RINNAI PRODUCT RANGE

 


 

Delegates at this year’s Futurebuild exhibition are being encouraged to visit stand G24 to discover how Biotecture’s living wall systems can transform urban environments and enrich spaces inside and out.

This year’s Futurebuild is being held between 7 – 9 March 2023 at ExCel, London.

Biotecture is an innovative vertical green infrastructure company with a proven track record of successfully designing, installing, and maintaining living walls both in the UK and overseas. Recent projects include the living walls across the Canary Wharf estate, 20 Fenchurch Street in London and Wimbledon Court No.1.

Urban greenery provides many benefits from reduced air pollution to better wellbeing. When space is at a premium, both literally and financially, living walls are a space efficient solution for bringing more plants into urban areas.

A recent survey commissioned by Biotecture found that two thirds (66%) of people who live in urban environments want to see more botanical beauty where they live. And 78% say greenery improves their mental wellbeing.

Recognising that space in urban areas is limited, the majority (57%) would welcome more vertical greenery, such as living walls, to make up for the lack of ground level room in their city.

The Biotecture stand will be easy to find thanks to the largescale living walls which will be on display.

Biotecture’s BioPanelTM system is a patented modular hydroponic living wall that combines efficient water management with remote sensing technology. It is the UK’s leading green wall rainscreen cladding system.

The PlantBox system is a stackable, modular living wall that is ideal for ‘quick win’ urban realm improvements. It’s modular and stackable and only requires restraint fixings. Biotecture recently installed PlantBox living walls across the Canary Wharf estate and the scheme won a prestigious BALI Award.

Rounding up the reasons to visit stand G24 is the living wall industry’s new ‘External Cladding: Living Walls and Fire Safety Best Practice Guidance’ which Biotecture was closely involved in developing. The team will be available to discuss what is essential reading for anyone looking for clarity on the National Building Regulations in relation to living walls.

Richard Sabin, Managing director at Biotecture, said: “We are encouraging as many visitors as possible to our stand at Futurebuild. We welcome discussion with clients, architects and designers on how we can enrich their projects with green walls.”

He added: “We have a solution for all types of buildings; Our patented modular hydroponic system combines efficient water management with remote sensing technology, and our freestanding PlantBox system facilitates vertical greening in smaller commercial and residential locations.”

The Biotecture suite of urban greening products are made from recycled materials and enable the incorporation of nature into the built environment.

A GUIDE TOWARDS NET ZERO AND LOWER CARBON EMMISSIONS – UK ENERGY FOR THE FUTURE

 

 

 

Rinnai’s Chris Goggin lists a brief guide to national & local power variables that do, and might, in the future, supply the UK end-user and consumer. He looks at what is currently on offer and how that energy is manufactured and operates within the total UK mix of fuels.

 

As the UK is now firmly in an era of energy transition it is important that all interested parties – heating engineers, contractors, consultants and end-users – should be aware of what alternative energy is currently available and future options being actively considered.

Carbon heavy fuels are currently being phased out and replaced with a variety of low carbon alternatives. Instead of oil, natural gas and fossil fuel-generated electricity, renewable sources such as wind, wave and solar are being gradually introduced into the UK energy mix.

Biofuels such as BioLPG and RDME could also become UK market relevant along with green gasses such as hydrogen, which is supported by the UK hydrogen strategy and a myriad of pilot schemes across the UK. Energy policy in the UK is also planning to increase nuclear capacity with the construction of several new facilities, with the objective of providing low carbon electricity and potentially hydrogen. Following is a short exposition of each energy vector.

 

HEAT PUMPS

Heat pumps are an old but current technology – the first was invented by Peter von Rittinger in 1867. They can be considered zero carbon at the point of use. However, the carbon intensity of the system is dictated by the electrical grid generation method. A heat pump works by extracting heat from air outside and elevating its temperature using a compressor. Compressed heat Is then transferred into a body of water for heating and DHW.

Residual heat is stored in a hot water cylinder used for showers and baths. If installed correctly on to an appropriate property a heat pump will prove to be an energy efficient, effective tool of decarbonisation to the end-user.

Heat pumps are widely used in Scandinavian countries and other major European economies such as Germany. Mainstream UK media support heat pumps as do governmental grants that supply most initial purchase costs. Heat pumps are available with approved technology that encourages decarbonisation.

SOLAR ENERGY

 

Solar energy absorbs sunlight into photovoltaic panels which produces an electrical charge. This charge of electricity is then converted and transported into a domestic or commercial application. The UK government encourages domestic renewable energy installation. Homeowners can partly subsidise their solar panels through several governmental grants.
One example of UK homeowners incentivised towards solar thermal installation through a governmental scheme is the Smart Export Guarantee (SEG) which allows homeowners to receive payments for unused excess energy exported back to the national grid.

Solar power is viewed as holding the potential to contribute meaningfully towards the current and future domestic UK energy mix as well as multiple others across the globe. Only recently it was announced that Global renewable energy company – Low Carbon, has announced construction of 3 new large solar farms in Essex, Derbyshire and Buckinghamshire. Construction in Buckinghamshire will begin immediately. Once complete the facility will provide clean power to more than 7300 homes. Capacity of this site will be 23.4MW. Work on the 28.8MW Derbyshire and 23MW Essex locations will begin in the early new year – 2023. Similar installations are being constructed across every continent.

WIND ENERGY

Renewable wind energy is created when wind turbines are pushed by natural currents of air which is then converted into electricity via a generator. Current UK direction of onshore wind energy is convoluted. At present there is a ban on installing new onshore wind farms inside the UK. However, some media outlets report that the ban is lifted, others maintain the ban is still in effect. Offshore wind farm capacity is being expanded to meet future demand. There are several new installations being constructed inside UK and Irish waters.

Offshore wind facilities under construction and due to begin operations. Amongst the new sites to be introduced is the Dogger Bank Wind Farm off the coast of Yorkshire, Northeast England which will begin operations in 2025. £8.27 billion has been invested into this project and is a joint venture undertaken by SSE Renewables, Equinor and Eni Plenitude.

WAVE ENERGY

Wave energy is created once captured kinetic energy gathered by tidal movements pushes a turbine, which in turn produces electricity. Wave and wind energy rely on the same concept of utilising kinetic energy to generate power. Wave energy is considered 100% carbon neutral. Wave energy is expensive to produce and maintain but is also effective. UK policy adjustments in market and planning legislation could see wave power become expanded to meet future demand.

Further on-land construction work is continuing on the £35 million Holy Island Tidal Energy Scheme, in North Wales. 35 sq km of seabed will be used to generate as much as 240MW of clean tidal electricity, enough to power 180,000 domestic properties.

rDME

Renewable DiMethyl Ether – known as rDME – is a molecule-based fuel that can be produced through a wide range of renewable feedstocks which allows for quick and long-term sustainable production. rDME contains a similar chemical composition to Butane and propane and can be mixed with LPG in existing appliances to continue product operations.

rDME combusts cleanly and releases no “soot” emissions. It has many fuel properties that make it easily used in sites and appliances currently using diesel as a fuel. It has a very high cetane number, which is a measure of the fuel’s ignitibility in compression ignition engines.

Future capacity of rDME is set to rise sharply, further increasing the likelihood of rDME being introduced nationally at some stage soon. A demonstration plant is to be opened later this year, whist the first operational commercial site manufacturing rDME will be on-line in 2024 in Teesside.

LGP & BioLPG

LPG (Liquefied Petroleum Gas) is a low carbon fuel source that is supplied in two forms – propane and butane. BioLPG is 100% carbon neutral and produced through renewable feedstocks such as plant and vegetable waste. Both are considered future forms of carbon friendly energy.

LPG producers see a role for Bio-LPG in the future whether that be blended with LPG or BioLPG. The fuel can be theoretically drop in, meaning limited disruption and user familiarity. Companies have invested over £260 million to date in developing clean liquid gases, including bioLPG and rDME to market. During the transition to renewable liquid gases LPG will remain a valuable part of the low carbon energy mix.

As economies and industry attempt to decarbonise fuel supplies, demand for LPG and BioLPG will rise. Legislation amendments introduced by the US, EU and Japan could see both demand and produced volume of BioLPG increase.

NUCLEAR ENERGY

Nuclear energy occurs when a reaction from either uranium or plutonium is stimulated to generate electricity. The UK government is keen to expand nuclear capacity.

As of writing, it has been confirmed that the UK government will inject £700 million of taxpayer’s money in developing Sizewell C nuclear power plant. Doing so will provide 6 million homes with low carbon electricity for more than 50 years and strengthen national energy security.

HYDROGEN

Hydrogen is produced in various forms signalled by a spectrum of assorted colours: blue, green, pink, brown, grey, yellow and turquoise.

 

  • Blue hydrogen is formed once natural gas is heated with steam in a process called Steam Methene Reforming (SMR). Hydrogen and carbon dioxide are created as a result meaning that emissions must be captured and stored for blue hydrogen to become a low carbon fuel source.
  • Grey hydrogen uses Steam Methene Reforming without capturing any emissions.
  • Green hydrogen occurs once water molecules are split into oxygen and hydrogen using renewable energy to power an electrolyser which sits in a water basin. Green hydrogen is considered 100% carbon neutral and is regarded as a source of future clean energy.
  • Pink hydrogen is created through nuclear powered electrolysis whilst yellow hydrogen is produced through solar powered electrolysis.
  • Turquoise hydrogen is made using a process called methane pyrolysis which produces hydrogen and solid carbon.

 

An extensive list of major international energy companies, such as BP and Equinor has announced various projects costing billons that explore the introduction of hydrogen as a major contributor towards future global energy needs. Spanish renewable energy company Iberdrola are planning to develop a green hydrogen production facility at the UK’s largest port in Felixstowe. Iberdrola is prepared to invest £150 million in the project which is expected to be operational in 2026.

Closer to home the UK issued its Hydrogen strategy in 2021, with the objective of achieving 10GW of Low Carbon Hydrogen by 2030. The strategy is also seeing rapid developments in pilot schemes using 100% hydrogen across the UK.


CLICK HERE

For more information on the RINNAI product range

 


 

Rinnai’s H3 range includes all mainstream varieties of renewable energy alternative options including, LOW-GWP heat pumps (4kw – 110kw) Hydrogen Blends 20% ready and BioLPG ready water heaters and boilers and market leading solar thermal. All options focus on creating decarbonisation pathways that are technically, practically and economically feasible based upon real life requirements. The H3 range is supported by in house design support along with carbon and cost modelling.

 

Rinnai can offer multiple avenues of cost reducing decarbonisation across various energy vectors. To create a healthier way of living, Rinnai is expanding customer choices in hot water provision as well as heating domestic and commercial buildings through a wide range of renewable energy systems. Rinnai’s solar thermal water heating systems are a market leading solution that saves up to 3.5x more carbon per m2 compared to conventional solar technology. This combined with the Rinnai Hydrogen and BioLPG ready condensing water heaters water heating system will save carbon and cost as the Rinnai water heaters will modulate from 58kw – 4.4kW dependent on the solar input therefore only using gas to boost the temperature when needed – harnessing renewable gains and not compromising on performance.

Core design values of Rinnai VirtuHOT solar thermal collectors have benefited from multiple workshops with experienced installers, whose valuable insights have been integrated into design and innovation. This has resulted in a system that is focussed on installer needs to simplify transportation, installation, and maintenance. From an in-life end user perspective the Rinnai VirtuHot system will deliver 50% greater financial returns per m2 in comparison to conventional solar technology, reducing ROI and saving energy and carbon in the process. The Rinnai condensing water heaters and VirtuHOT solar thermal array are backed with a warranty of up to 10 years to give additional peace of mind for installers and end users.

Rinnai intelligent condensing continuous flow water heaters can save more than 30% in operational running costs when compared to gas fired storage systems, helping to reduce fuel costs and exposure to ever-increasing energy and climate change legislation. All Rinnai & Naked Energy solar thermal products are precisely aligned with the hot water heating systems & units which are hydrogen blends-ready 20% and renewable liquid fuel (BioLPG and rDME) ready combustion technologies.

Rinnai’s H3 range of decarbonising products include commercial and domestic heat pumps that contain a variety of features: the HPIH range of commercial heat pumps is suited towards schools, restaurants, and small retail outlets. Rinnai’s HPIH Monobloc Air Source Heat Pumps – 21, 26, 28 & 32kW range can allow for up to seven units to be cascaded together or operate alone as one unit. Once joined together – can serve increased demand for heating and hot water.

The HPIH series includes a range of controls and system peripherals which ensures that all technical machinations can be monitored. Rinnai’s HPIH commercial heat pumps also deploy the refrigerant – R32. The HPIH use maintains an ERP rating of A++ making this range of heat pumps an ideal economic and environmental option for new build and refurbishment projects.

Rinnai’s HPHP series of LOW GWP heat pumps range from 48kw – 70kw. State-of-the-art technology added in the injection process outperforms gas compression technology and ensures that even with outside temperatures of –25 Celsius, heating, and hot water of up to 60 + Celsius can still be delivered.

Rinnai’s HPI SL range models perform with ultra-low sound capability ensuring compatibility with areas that hold strict sound compliance standards. All units operate in three different modes: heating, cooling and DHW and include specific system programmes that enhance product performance in all modes.


Rinnai’s H3 range is supported by free training courses, CPDs, FREE design services and extensive warranty options

 

CLICK HERE FOR FURTHER DETAILS


  RINNAI H3 PRODUCT ROADMAP TO LOWER CARBON AND NET ZERO DE-CARBONISATION

Rinnai’s product and service offering is based on H3- Hydrogen, Heating and Heat Pumps – which allows any site in either residential or commercial sites to maximise the energy efficiency and performance in striving for NetZero and Decarbonisation. Additionally, Rinnai is developing and introducing electrical formats to all existing product ranges within the next few months. Rinnai’s new “H3” range of products includes a wide selection of commercial heat pumps as well as hydrogen blends-ready and hybrid hot water heating systems.

Rinnai is a world leading manufacturer of hot water heaters and produces over two million units a year. The company operates on each of the five continents and the brand has gained an established reputation for high performance, robust cost efficiency and extended working lives.

Rinnai’s commercial and domestic hot water products offer a limitless supply of instantaneous temperature controlled hot water and all units are designed to align with present and future energy sources and accept either natural gas or hydrogen gas blends. Rinnai units are also suited for off-grid customers who require LPG and BioLPG or rDME.

Rinnai units are UKCA certified, A-rated water efficiency, accessed through multiple fuel options and are available for purchase 24/7, 365 days a year. Any unit can be delivered to any UK site within 24 hours. System design services are available if needed and cost comparison services are accessible to all customers who require further cost detail.

Rinnai’s Innovation Manifesto clearly outlines the path to carbon neutrality and maintains a pledge to fully decarbonize company operations by 2050. Rinnai will further support the global clean energy transition by introducing a wide variety of domestic heating options across multiple energy vectors.

Rinnai is committed to decarbonisation. Rinnai’s water heating products are all hydrogen-blends ready NOW including the world’s first 100% hydrogen powered water heater. Rinnai products also accept BioLPG capable of delivering NetZero carbon emissions. Rinnai offer comprehensive training courses and technical support in all aspects of the water heating industry. More information can be found on Rinnai’s website and its “Help Me Choose” webpage.

 CLICK HERE For more information on the RINNAI product range

 

As the expert in innovative engineered wood panels for the UK construction and housebuilding market, we support our customer in lots of ways. Our popular downloadable checklist for housebuilders and interactive product guide proved invaluable in 2022; they are simple tools which ensure you are choosing the best panel product for your project.

 

You can download the checklist which will help in the selection of the perfect product from floor to roof. As you’ll see, the checklist is just one of many resources, available here, designed especially for the housebuilder.

 

The housebuilders’ page includes a fully interactive product guide to download, details of projects using our popular boards, answers to frequently asked questions, and samples and brochures to order. A simple click on the tabs at the side of the guide opens up the chosen product, application or technical information page. Whatever the project, the easy-to-navigate guide makes choosing the right product simple. The guide contains all the information needed on panels in the SterlingOSB Zero, CaberFloor, and CaberMDF portfolios, including detailed technical product data and installation advice. In addition to this, our guide highlights different applications, including roofing, flooring, walling, timber frames, hoarding, shopfitting, and furniture among others such as moulding and packing.

 

If you prefer a paper copy of the guide, which also encompasses contact information for general enquiries and technical expertise, you can request one here!

 

As you’d expect from the UK’s No 1 producer of engineered wood panels, we are committed to playing our part in reducing our emissions, and we are greener than you might think.  Our products are net carbon negative.  Find out more here.

 

All West Fraser panel products produced in the UK are manufactured in mills that have obtained the coveted environmental ISO 14001 accreditation. Responsibly sourced, the panels are FSC-certified and created from locally grown timber, cutting embodied carbon from transportation.


For further information, call 01786 812 921.

 


 

Cost of living causing consumers to think again about retrofitting

 

RICS and YouGov survey shows homes therefore less likely to be able to cope with climate impacts or to mitigate rising energy costs

The cost of living crisis, has cast new doubt on the progress towards the United Kingdom’s Net-Zero ambition. Previous research from RICS* had found that homeowners were citing cost of retrofitting as a barrier, but despite new policy measures, new research from RICS and YouGov shows that consumers are now concerned about paying for the cost of living above upgrading their homes.

Retrofitting has obvious benefits, such as being able to maintain a constant temperature in the home, as well as increasing the desirability of your property – the December 2019 Residential Market Survey*, prior to the energy crisis, cited almost two thirds of the survey’s respondents believed that the willingness to pay for energy efficient homes would rise in the next three years.

However, the latest consumer research from RICS and YouGov shows that homeowners are unsurprisingly looking to concentrate spending on escalating household costs.

The new research backs up previous calls made by the institution in 2020 for more policy measures to incentivise industry and consumers to retrofit the UK housing stock. The research found that while 34% of homeowners said they would invest in green technology to lower bills in the future, 45% would be focusing on using any savings to pay for their existing living expenses, meaning more incentives and cheaper options must be made available if the country is to stay on track to meet target and green 15million properties*.

This latest research follows the RICS January 2020 Residential Market Survey* where members operating in the residential sales and lettings market stated that without strong market driven incentives, regulation was the policy lever with the greatest potential to improve energy efficiency outcomes. Alternatively, a tax policy could achieve a similar effect through a mix of stamp duty and a reduction of VAT on home improvements.

Currently, the Government’s ambition to hit Net-Zero carbon emissions requires significant numbers of private homeowners to retrofit their properties to make them greener.

51% who confirmed they hadn’t already installed new energy saving measures in their homes but would know how to, said it was because of the costs involved. And of the same group, even those who would consider it to make their home more attractive to prospective buyers, 40% said they’d only consider spending around £1000 to £5000 on energy improvements, which could pay for some solar panels** but wouldn’t cover the heat-pump.

As the cost of living continues to consume more household finances, measures are needed to avoid many properties failing to meet targets and becoming un-mortgageable. To review the potential impact that failure to support consumers would have on the housing market, most homeowners (55%) would consider installing energy saving schemes if they knew it would make their property more attractive when it came to selling up. With figures from Rightmove showing that greener homes can attract a higher premium, properties need more than an EPC assessment to help inform decisions**.

As EPCs aren’t the best measure for all properties, as some listed buildings can’t have triple glazing for example, RICS is recommending and working with lenders and government to look into ‘Retrofit Surveys’ which would enlist the expertise of a professional – such as a building surveyor- to provide detailed advice on what technologies homeowners could install to help inform their decisions. This is supported with 77% of homeowners saying they’d find this advice helpful when thinking of buying a new home.

Sam Rees, Senior Public Affairs Officer at RICS, said:

“The retrofitting of millions of UK homes will be essential to helping to meet our net zero ambitions, however homeowners’ immediate concerns are understandably with the rising cost of living, especially their energy bills. It is important to recognise that retrofitting and the cost of living are not mutually exclusive issues.

“A suitably retrofitted, low-carbon home can help with the long-term challenges of the cost of living and reducing high levels of energy consumption. Achieving this however is not cheap. With the UK Government giving financial support to homeowners to support them with rising energy prices, RICS is calling on the government to extend this support and provide additional financial incentives to homeowners to encourage retrofitting and ultimately helping to tackle the cause of high energy usage.

“Before any significant investment is made on retrofit measures, RICS urges homeowners and the government to ensure a retrofit assessment is undertaken on the property first – ensuring that no unintended consequences occur such as overheating or increased energy demand. This is critical to protecting consumers and RICS is undertaking significant research to support such assessments.”

FURTHER INFORMATION

*RICS UK Residential Market Surveys UK Residential Market Survey (rics.org)

**Rightmove-Green-Homes-Report.pdf

The top energy saving measures homeowners who know how to make their home more environmentally friendly said they already had installed in their property were:

Double or triple glazed windows – 71%
Energy-efficient lighting – 69%
Loft/cavity wall insultation – 63%
Energy efficient appliances – 52%
Solar panels – 17%
Air source heat pumps 5%
Geothermal heating – 2%

All figures, unless otherwise stated, are from YouGov Plc. Total sample size was 4357 adults of which 2776 are homeowners. Fieldwork was undertaken between 31st May – 3rd June 2022. The survey was carried out online. The figures have been weighted and are representative of all GB adults (aged 18+).

* 15 million homes need energy efficiency upgrades – Lloyds Banking Group plc

** Solar panels typically cost between £2,900 and £6,700 according to the Energy Saving’s Trust.